ricom

&

SNF™

Application Programming Interface

Version 3.0.13.50838

January 5, 2018

All information contained in this document is proprietary to CSP, Inc. and may not be repro-
duced, distributed, or disseminated, in whole or in part, without the written permission of an
authorized representative of CSP, Inc.

All specifications presented in this document are subject to change at any time, and without
prior notice.

Myricom® and Myrinet® are registered trademarks of CSP, Inc. SNF'" is a trademark of
CSP, Inc. Other trademarks appearing in this document are those of their respective owners.
©2008-2014, CSP, Inc.

Contents

1 SNF API Reference 1
1.1 Sniffer Documentation e e e e e e 1

1.2 SNF APIReference o o i e e e e e e e e e 1
1.2.1 SNF API with Receive-Side Scaling 1

1.2.2 SNF API with Duplication e 2

1.2.3 SNF API with Port Aggregation (Merging) 2

1.3 Examples o e e e 2

2 Module Index 3
2.1 APIReference. e e 3

3 Namespace Index 5
3.1 Namespace List o o o e e e e 5

4 Data Structure Index 7
4.1 Data StrucCtures v e e e e e e e e e e 7

5 Module Documentation 9
5.1 SNFAPIReference e e e 9
5.1.1 Detailed Description L e 11

5.1.2 APIReference e e 11

5.1.3 ProcessingModel 11

5.1.3.1 Multiple Receive Rings L 12

5.1.3.2 Zero-Copy I€CeIVES . . v v v v v v v e i e e e e e e e e e e e e 12

5.1.3.3 API Software Overhead 12

5.1.3.4 Thread-Safety 12

5.1.4 TImplementationdetails e 13

5.1.4.1 0 TImMeStamps o v v v vt e e e e e e e e e 13

5.14.2 Library Memory Consumption 13

5.1.4.3 Ethernet and Sniffer Driver Modes 13

5.1.5 Define Documentation e e e e e e e e 13

5.1.5.1 SNF_VERSION_API e e 13

5.1.6 Typedef Documentation 14

5.1.6.1 snf_handle_t e e e 14

5.1.6.2 snf_ring_t e 14

5.1.7 Enumeration Type Documentation e 14

5.1.7.1 snf_link_state e e 14

5.1.7.2 snf_timesource_Stateo e e e 14

5.1.8 Function Documentation L e e 14

5.1.8.1 snf_close e 14

Myr icom Myricom SNF™

5.1.8.2 snf_freeifaddrs 15

5.1.8.3 snf_get_link_speed 15

5.1.84 snf_get link_state 15

5.1.8.5 snf_get_timesource_statel e 16

5.1.8.6 snf_getifaddrs 16

5.1.8.7 snf _getportmask linkupo o L 16

5.1.8.8 snf_getportmask_valid. 17

5.1.89 snf_init. e e e e e e e e e e 17
5.1.8.10 snf_open 17
5.1.8.11 snf_open_defaults 18
5.1.8.12 snf_ring_close 19
5.1.8.13 snf ring_getstats 19
5.1.8.14 snf_ring_open e e 19
5.1.8.15 snf ring_open_id 20
5.1.8.16 snf_ring_portinfo 20
5.1.8.17 snf_ring_recv 21
5.1.8.18 snf_ring_recv_many e e e e e 21
5.1.8.19 snf_ring_return_many ot e e e e e e e e 22
5.1.820 snf set_app_id 23
5.1.8.21 snf_start L. e e e e e e e e e e e e 23
S5.1.822 snf_Stop e 24

5.2 Receive-Side Scaling (RSS) L 25
5.2.1 Detailed Description 25
5.2.2 Define Documentation e e 25
5.22.1 SNE_RSS_IPV4 e 25

5.2.3 Enumeration Type Documentation e 25
5.23.1 snf_rss_mode_flags 25

5.2.3.2 snf_rss_params_model 26

5.3 Open flags for process-sharing, port aggregation and packet duplication 27
5.3.1 Detailed Description L e e e e 27
5.3.2 Define Documentation e 27
5.3.2.1 SNF_F_AGGREGATE_PORTMASK 27

5322 SNF_F_PSHARED et 27

5.3.23 SNF_F_RX_DUPLICATE et 27

54 Packetinjection L e e 28
5.4.1 Detailed Description e e e e e e 28
5.4.2 Typedef Documentation e 28
5421 snfinject_t 28

5.4.3 Function Documentation e e e 29
5.4.3.1 snf_get_injection_speedo 29

5432 snf_inject_close e e 29

5.4.3.3 snf_inject_getstats 29

5434 snfinject_openo 30

5435 snfinject.sched 30

54.3.6 snf_inject_sched_v 31

5.4.3.7 snf_inject_send e 32

54.3.8 snf_inject_send_v 33

5.5 Packetreflect to netdev (kernel stack) 35
5.5.1 Detailed Description 35
5.5.2 Typedef Documentation e e 35

Version 3.0.13.50838 il ii

Myricom

Myricom SNF™

552.1 snf netdev_reflect t
5.5.3 Function Documentation

5.53.1 snf netdev_reflect

5.5.3.2 snf netdev_reflect enable

6 Namespace Documentation

6.1 snf Namespace Reference
6.1.1 Detailed Description

7 Data Structure Documentation

7.1 snf_ifaddrs Struct Reference
7.1.1 Detailed Description
7.1.2 Field Documentation
pad . . . oL
snf_ifa_link_speed
snf_ifa_link_state
snf_ifa_macaddr
snf_ifa_maxinject
snf_ifa_maxrings
snf ifa name
snf ifa next
snf_ifa_portnum,
7.2 snf_inject_stats Struct Reference
7.2.1 Detailed Description
7.2.2 Field Documentation
inj_pkt_send
nic_bytes_send
nic_pkt.send.
7.3 snf_pkt_fragment Struct Reference
7.3.1 Detailed Description
7.3.2 Field Documentation
length
P .
7.4 snf_recv_req Struct Reference
7.4.1 Detailed Description
7.4.2 Field Documentation
hw_hash
length
length_data
pktaddro L
portnumo
timestamp
7.5 snf_ring_portinfo Struct Reference
7.5.1 Detailed Description
7.5.2 Field Documentation
data_addr
data_size o
portent
portmask

7.1.2.1
7.1.2.2
7.1.2.3
7.1.2.4
7.1.2.5
7.1.2.6
7.1.2.7
7.1.2.8
7.1.2.9

7.2.2.1
7.2.2.2
7.2.2.3

7.3.2.1
7322

74.2.1
74.2.2
7423
74.2.4
7.4.2.5
7.4.2.6

7.5.2.1
7.5.2.2
7.5.2.3
7524
7.5.2.5
7.5.2.6

Version 3.0.13.50838

iii

iii

Myr icom Myricom SNF™

7.6 snf_ring_ginfo StructReference L oL 43
7.6.1 Detailed Description e e 44

7.6.2 Field Documentation 44
7.6.2.1 qlavail 44

7.6.2.2 g borrowed e e 44

7.623 g free e 44

7.7 snf_ring_stats Struct Reference L 44
7.7.1 Detailed Description L. e e 44

7.7.2 Field Documentation 44
7.7.2.1 MiC_DYteS_TECV o v o o e e e e e e e e 44

7.7.22 mic_pkt_bad e e 45

7.7.23 nic_pkt dropped L. 45

7.7.24 nic_pkt_overflow 45

7.7.25 mic_pkt recvo 45

7.7.2.6 ring_pkt_overflow 45

77277 1ing_pKt_TECV L e e e e e e e 45

7.7.2.8 snf pkt overflow L 45

7.8 snf rss_mode_function Struct Reference 45
7.8.1 Detailed Description e e e 45

7.8.2 Field Documentation e e 46
T.82.1 ISS_CONtEXL . . v v v v v o o e e e e e e e e e e e 46

7.82.2 rss_hash_fn e 46

7.9 snf_rss_params Struct Referenceo 47
7.9.1 Detailed Description L e e e e 47
7.9.2 Field Documentation e 47
7.92.1 mode e e e e e e 47

7922 paramso e e e e e e e e e e e 47

7.923 rss_flags L 47

7.9.2.4 rss_function e e e 48

Version 3.0.13.50838 iv iv

Chapter 1

SNF API Reference

1.1 Sniffer Documentation

The Sniffer User Guide covers NIC and software installation as well as instructions on how to use Sniffer with libpcap-
based applications. It is available from https://cspi.force.com/customersupport/

1.2 SNF API Reference

The SNF API is available for applications that require tighter integration than libpcap with Sniffer. When used in its
simplest form, the library resembles Libpcap in that the implementation expects a single thread to make successive
calls to a receive function (snf_ring_recv) to obtain the next available packet. Under a more advanced form, Sniffer
implements a variation of the Receive-Side Scaling (RSS) feature that is present in some 10-Gigabit Ethernet drivers.
However, Sniffer takes the additional step of implementing the RSS feature as multiple user-level zero-copy receive
rings. Making the rings available in userspace provides two important advantages over all existing kernel-based packet
capture solutions:

* No system calls are required to retrieve packets from a kernel-level queue, and users have zero-copy access to
incoming packets;

* There is no need to funnel all incoming packets through a single Libpcap-like device as would be the case in
kernel-based methods, even if RSS rings are allocated in the kernel.

1.2.1 SNF API with Receive-Side Scaling

Sniffer translates the RSS feature into multiple rings in that data is hashed across many receive rings (or buffers or
slices as is referenced in the myril0ge documentation). This feature assumes that users maintain a 1-to-1 relationship
between user threads and rings. With each new call to snf_ring_recv, it is assumed that the previous packet in the ring
has been completely consumed.

By default, the Sniffer implementation uses a deterministic hashing function to make sure that packets that are con-
tained in a particular TCP or UDP flow are always delivered to the same ring (and hence to the same analysis thread).
This hashing function resembles the hashing mechanisms used in existing RSS drivers.

1

https://cspi.force.com/customersupport/

M—yr i com Myricom SNF™

S

1.2.2 SNF API with Duplication

While multiple rings are primarily designed to partition the incoming packet capture across multiple capture consum-
ing rings, it is also possible to force each received packet to be duplicated into each ring such that every consuming
ring obtains its own copy of every incoming packet. The duplication is handled by the Sniffer software on the host
where there is typically plenty of memory bandwidth compared to the PCle bus. Packet duplication can be enabled by
setting the SNF_F_RX_DUPLICATE flag in snf_open.

1.2.3 SNF API with Port Aggregation (Merging)

With Sniffer 2.0, it is now possible to logically aggregate packets from two or more Ethernet ports. The functionality
can be extended through to consumers that employ RSS or duplication. This feature can be enabled in snf_open by
setting the SNF_F_AGGREGATE_PORTMASK flag and passing a bitmask of ports to aggregate in the portnum
parameter. As a convenience, functions are also available to return portmasks for valid ports (snf_getportmask_valid)
and active ports (snf_getportmask_linkup). As a result of calling snf_ring_recv, packets from one or more ports will
be received.

1.3 Examples

Tests are available from bin/tests of the install directory in binary form and in share/doc/examples in source form.
These tests mostly show different aspects of the SNF API and how to use its features.

snf_simple_recv.c: Simplest example of how to receive packets
snf_multi_recv.c: How to receive packets with multiple rings

snf_bridge.c: Example of how to use SNF to create a transparent bridge to analyze traffic on one device and replay it
on another

snf_pktgen.c: How to generate packets for injection
snf_replay.c: Example that uses SNF-level injection to replay a .pcap capture file

snf_basic_diags: Basic internal diagnostics which can be useful to verify that everything works as expected (source
code not available)

Version 3.0.13.50838 2 2

Chapter 2

Module Index

2.1 API Reference

Here is a list of all modules:

SNF API Reference e e 9
Receive-Side Scaling (RSS) L e 25
Open flags for process-sharing, port aggregation and packet duplication 27
Packetinjection e e e e e 28
Packet reflect to netdev (kernel stack)o 35

Myricom Myricom SNF™

Version 3.0.13.50838 4 4

Chapter 3

Namespace Index

3.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

Myricom Myricom SNF™

Version 3.0.13.50838 6 6

Chapter 4

Data Structure Index

4.1 Data Structures

Here are the data structures with brief descriptions:

snf_ifaddrs oL L e 39
SNf_INJECt_StAatS o e e e e e e e e e e e e 40
snf_pkt_fragment

Fragment for snf_inject_send_v 41
SNE_TECV_T@Q . .« « o o o o e e e e e e 41
snf_ring_portinfo L L e e e e 42
snf_ring_qinfo L. e 43
SNf_TING_SLALS o . e e e e e e e e e e e 44
snf rss_mode_function L L L e e, 45
SNf_ISS_Params L. e e e e e e 47

Myricom Myricom SNF™

Version 3.0.13.50838 8 8

Chapter 5

Module Documentation

5.1 SNF API Reference

API Reference for SNF and usage model.

Data Structures

* struct snf_ifaddrs

* struct snf_recv_req

e struct snf_ring_qinfo

* struct snf_ring_portinfo
* struct snf_ring_stats

Modules

* Receive-Side Scaling (RSS)

* Open flags for process-sharing, port aggregation and packet duplication
* Packet injection

¢ Packet reflect to netdev (kernel stack)

Defines

* #define SNF_VERSION_API 8

Typedefs

* typedef struct snf_handle * snf_handle_t

opaque snf device handle
* typedef struct snf_ring * snf_ring_t

opaque snf ring handle

Myr icom Myricom SNF™

Enumerations

e enum snf_link_state { SNF_LINK_DOWN =0, SNF_LINK_UP =1}

¢ enum snf_timesource_state {
SNF_TIMESOURCE_LOCAL = 0, SNF_TIMESOURCE_EXT_UNSYNCED, SNF_TIMESOURCE_EXT_-
SYNCED, SNF_TIMESOURCE_EXT_FAILED,
SNF_TIMESOURCE_ARISTA_ACTIVE, SNF_TIMESOURCE_PPS }

Functions

e int snf_init (uint16_t api_version)
Initialize Sniffer Library with api_version == SNF_VERSION_API.
* int snf_set_app_id (int32_t id)
Set the application ID.
* int snf_getifaddrs (struct snf_ifaddrs *x*ifaddrs_o)
¢ void snf_freeifaddrs (struct snf_ifaddrs *ifaddrs)
* int snf_getportmask_valid (uint32_t *mask_o, int *xcnt_o)
* int snf_getportmask_linkup (uint32_t xmask_o, int xcnt_o)
* int snf_open (uint32_t portnum, int num_rings, const struct snf_rss_params *rss_params, int64_t dataring_sz,
int flags, snf_handle_t «devhandle)
Open device for single or multi-ring operation.
« int snf_open_defaults (uint32_t portnum, snf_handle_t *xdevhandle)

Open device for single or multi-ring operation.
e int snf_start (snf_handle_t devhandle)
* int snf_stop (snf_handle_t devhandle)
« int snf_get_link_state (snf_handle_t devhandle, enum snf_link_state *state)
* int snf_get_timesource_state (snf_handle_t devhandle, enum snf_timesource_state xstate)
* int snf_get_link_speed (snf_handle_t devhandle, uint64_t xspeed)
e int snf_close (snf_handle_t devhandle)

Close port.
¢ int snf_ring_open (snf_handle_t devhandle, snf_ring_t *«ringh)
* int snf_ring_open_id (snf_handle_t devhandle, int ring_id, snf_ring_t *ringh)
* int snf_ring_close (snf_ring_t ringh)
e int snf_ring_recv (snf_ring_t ringh, int timeout_ms, struct snf_recv_req *recv_req)
Receive next packet from a receive ring.
* int snf_ring_portinfo_count (snf_ring_t ring, int *xcount)
For aggregated rings, return the number of physical subrings. If the ring is not aggregated, the count is set to 1.
e int snf_ring_portinfo (snf_ring_t ring, struct snf_ring_portinfo *portinfo)
Returns information for the ring. For aggregated rings, returns information for each of the physical rings. It is up to the
user to make sure they have allocated enough memory to hold the information for all the physical rings in an aggregated
ring.
* int snf_ring_recv_qinfo (snf_ring_t ring, struct snf_ring_qinfo x*)
Return queue information from ring.
* int snf_ring_recv_many (snf_ring_t ring, int timeout_ms, struct snf_recv_req *req_vector, int nreq_in, int *nreq-
_out, struct snf_ring_qinfo *qinfo)

Receive and borrow many packets at once.

Version 3.0.13.50838 10 10

Myr i com Myricom SNF™

S

* int snf_ring_return_many (snf_ring_t ring, uint32_t data_glen, struct snf_ring_qinfo *qinfo)
Return packet space to receive ring.

* int snf_ring_getstats (snf_ring_t ringh, struct snf_ring_stats *stats)

Get statistics from a receive ring.

5.1.1 Detailed Description

API Reference for SNF and usage model.

5.1.2 API Reference

The Sniffer API model is best summarized in the following steps:

¢ Initialize the API with the provided SNF_VERSION_API pre-define to ensure future ABI compatibility snf_init.

* Query available Sniffer-capable devices if required (snf_getifaddrs) and open the device by port number (snf_-
open) with one or more rings.

e Have the current (or many other threads) open a receive ring for capture (snf_ring_open), then start packet
capture (snf_start).

» Each ring is serviced in a loop by one or more consumers (snf_ring_recv).
* Each ring is closed and finally, the device can be closed (snf_ring_close and snf_close).

» Packets can be injected by opening injection handles, which can be opened independently from the receive
capability. Injection handles can be used to re-inject packets or as a packet generator.

5.1.3 Processing Model

The API promotes a processing model mindful of the multiple cores available on today’s systems by enabling packets
to be received through multiple receive rings. This feature appears in many 10GBit Ethernet drivers as a Receive-Side
Scaling (RSS) but instead of being an feature internal to the driver, the Sniffer API presents the rings (or queues) as
a first-order interface to the user. Instead of internally maintaining multiple rings as part of the driver, the Sniffer
API allows users to directly create rings and retain better control over how rings are allocated on a typical multicore
system. The flexibility over ring allocation is balanced with a receive function with much stricter semantics, but only
to pursue these goals:

* Allow Sniffer implementation to partition incoming network traffic through receive rings while ensuring that
packets maintain order in TCP/UDP flows. This virtualizes the capture interface and allows parallel processing
of incoming packet data.

» Give users "zero-copy" access to captured data packets such that users can operate directly on the packet data
that was provided by the NIC.

* Minimize the use of locking and other software overheads in the critical path to achieve high packet rates (both
on each ring and as an aggregate).

Version 3.0.13.50838 11 11

M—yr i com Myricom SNF™

S

5.1.3.1 Multiple Receive Rings

The number of requested receive rings is part of the function call to open a device for packet capture. While users
retain control over how many rings are to be allocated by the API, the API best matches processing models that
allocate one ring per core, where each core will both capture packets from Sniffer and process/analyze them in place.
In-place processing refers to an effort to contain the packet capture and analysis within a CPU core’s memory domain,
which includes all levels of caches and RAM closest to the core. Since today’s multicore platforms are increasingly
complex in the non-uniformity of memory access (NUMA), it is best to minimize the amount of memory accesses
across memory domains and to maximize the amount of work that can be done by one core within its own memory
domain. As such, Sniffer assumes that for best performance, users recognize the importance of opening rings and
maintain strong ties between each ring’s single consuming thread and the core where it is scheduled.

5.1.3.1.1 Receive Side Scaling Modes

When multiple rings are used, users can specify how packets should be partitioned based on a set of RSS flags. These
flags instruct how Sniffer should hash incoming packets such that per-flow affinity is maintained in the same ring if
so desired. This effectively allows each ring to virtualize the underlying network interface by ensuring that packets
within the same flow are deterministically delivered to the same receive ring. Users should not need to reconstruct the
ordering of flows even though incoming data is being split across many receive rings.

5.1.3.2 Zero-Copy receives

When opening a device with one or multiple rings, users can also specify combined amount of memory that can be
consumed by all rings to store packet data. If left unspecified, the implementation will default to choosing a relatively
conservative amount of memory, assuming that consumers can process incoming packets at line rate. Resizing the
ring should be considered only to address specific buffering concerns and when multiple rings are not possible. It
is possible that larger rings are necessary to mitigate the non-real-time behavior of some of the supported operating
systems. Larger data rings will only serve as a temporary relief for users that cannot consume incoming data at line
rates. If the application does not return packets to the data ring as fast as the packets are coming in, the receive ring
will eventually overflow and the packets will be dropped.

5.1.3.3 API Software Overhead

The API tries to minimize software overhead in as many areas that can be addressed directly by the library. This
includes duplicating some internal data structures to prevent false sharing between multiple ring consumers. More
importantly, however, is the explicit decision to not provide any locking for the main receive function (snf_ring_recv).
Even light forms of locking can impact processing rates when incoming data rates are roughly 15 Mpps (or every 70
nanoseconds). Instead, the API promotes the use of multiple rings to improve concurrency in packet processing and
leave more breathing room for packet-per-packet analysis on each consuming core.

5.1.3.4 Thread-Safety

Users should consult the API reference for information on thread safety as each function extensively documents how
in can be used in threaded environments. While most API functions provide strong thread safety guarantees, the main
receive function (snf_ring_recv) is specifically not thread-safe for software overhead reasons explained in API Soft-
ware Overhead. The expectation is that multiple threads would each open their own receive rings and independently
consume packets on their own rings. Specifically, the Sniffer implementation assumes that with each successive call

Version 3.0.13.50838 12 12

M—yr i com Myricom SNF™

S

to snf_ring_recv within the context of a ring always means that the previous packet was consumed by the previous
receive on that ring. This should not come as a surprise for users that have been exposed to the serialization present
in libpcap-type interfaces. However, this may not necessarily match up well with users that expected to separate their
computing resources (i.e. cores) between capture and analysis. These users can always resort to using a single receive
ring.

5.1.4 Implementation details
5.1.41 Timestamps

Packet timestamps are available from each packet for packet arrival as seen from the NIC. The 64-bit nanosecond
since EPOC timestamp is returned to the user in the receive call. It should be straightforward for the user to convert
nanoseconds to a struct timeval if so needed. There are 3 timestamping modes: Host, Timesource (Hardware) and
Arista. In Host timestamping mode, the timestamp returned to the user in the receive call is normalized in host
nanoseconds ctime and Sniffer internally ensures that both clocks remain synchronized at a regular interval. The
frequency of the NIC’s clock is 2MHz plus/minus 100ppm. Timesource (Hardware) mode is available with 10G-PCI-
E2-8C2-2S-SYNC adapters when connected to an IRIG-B time source. Arista mode is available when the NIC port is
connected to an Arista 71xx series switch port with "FCS append mode" timestamping enabled and the mode is also
enabled in Sniffer10G with the MYRI_ARISTA_ENABLE_TIMESTAMPING=1 environment variable.

5.1.4.2 Library Memory Consumption

In order to efficiently use host memory, data rings are allocated when the device is opened as a pool of 4KB pages.
At open time, users can specify the number of data rings that are allocated as well as the amount of data_ring_size
that can be allocated for all rings. Internally, the Sniffer library requires an additional 1/32nd of the data_ring_size
for each ring and some additional inter-ring synchronization memory. This can be summarized as at most 10% of the
data_ring_size is allocated internally by Sniffer.

5.1.4.3 Ethernet and Sniffer Driver Modes

At any time, irrespective of whether the underlying device is enabled for Sniffer, users can configure a Sniffer-capable
device as a regular ethernet device (i.e. typically via ifconfig). Unless the device is opened for capture, both send
and receive functionality work as expected from any Ethernet driver. When the device is opened for capture, packets
usually destined to the Ethernet driver are delivered to a Sniffer receive ring instead. However, users can still rely on
the Ethernet’s RAW sockets interface to send packets (a sample raw socket send enabled with Sniffer receive calls is
provided as a test).

5.1.5 Define Documentation
5.1.5.1 #define SNF_VERSION API8

SNF API version number (16 bits) Least significant byte increases for minor backwards compatible changes in the
API. Most significant byte increases for incompatible changes in the API

0x0008: Add link speed support.

0x0007: Add Multiple Application support and snf_set_app_id() function.

0x0006: Internal driver/library API changes.

Version 3.0.13.50838 13 13

M—yr i com Myricom SNF™

S

0x0005: Internal driver/library API changes.
0x0004: Add more injection support and aggregate port opens
0x0003: Add injection support and 3 send counters in statistics.

0x0002: Add nic_bytes_recv counter to stats to help users calculate the amount of bandwidth that is actually going
through the NIC port.

5.1.6 Typedef Documentation

5.1.6.1 typedef struct snf_handlex snf_handle_t

opaque snf device handle

Opaque snf handle, allocated at snf_open time when a device can be successfully opened
5.1.6.2 typedef struct snf_ringx snf_ring_t

opaque snf ring handle

Opaque snf ring handle, allocated at snf _ring_open time when a ring can be succesfully opened. The ring itself can
represent a single or an aggregate of physical rings.

5.1.7 Enumeration Type Documentation
5.1.7.1 enum snf_link_state

Link state enumeration, returned by snf_get_link_state

5.1.7.2 enum snf_timesource_state

Timesource state (for -SYNC NICs), returned by snf_get_timesource_state

Enumerator:

SNF_TIMESOURCE_LOCAL Local timesource (no external). Returned if there is no available external time-
source or if its use was explicitly disabled.

SNF_TIMESOURCE_EXT _UNSYNCED External Timesource: not synchronized (yet)
SNF_TIMESOURCE_EXT_SYNCED External Timesource: synchronized
SNF_TIMESOURCE_EXT FAILED External Timesource: NIC failure to connect to source
SNF_TIMESOURCE_ARISTA_ACTIVE Arista switch is sending ptp timestamps
SNF_TIMESOURCE_PPS PPS is being used for time

5.1.8 Function Documentation
5.1.8.1 intsnf_close (snf_handle_t devhandle)

Close port.

Version 3.0.13.50838 14 14

Myr icom Myricom SNF™

This function can be closed once all opened rings (if any) are closed through snf_ring_close. Once a port is determined
to be closable, it is implicitly called as if a call had been previously made to snf_stop.

Return values

0 | Successful.
EBUSY | Some rings are still opened and the port cannot be closed (yet).

Postcondition

If successful, all resources allocated at open time are unallocated and the device switches from Sniffer mode to
Ethernet mode such that the Ethernet driver resumes receiving packets.

5.1.8.2 void snf_freeifaddrs (struct snf_ifaddrs x ifaddrs)
Free the list of library allocated memory for snf_getifaddrs

Parameters

\ ifaddrs | Pointer to ifaddrs allocated via snf_getifaddrs

5.1.8.3 intsnf_get_link_speed (snf_handle_t devhandle, uint64_t x speed)

Get link speed on opened handle

Parameters

devhandle | Device handle
speed | Returns speed in bits-per-second for the link

Remarks

The cost of retrieving the link speed requires a function call that reads information kept in kernel host memory
(i.e. no PCI bus reads).

5.1.8.4 intsnf_get_link_state (snf_handle_t devhandle, enum snf_link_state x state)
Get link status on opened handle

Parameters

devhandle | Device handle
state | Returns one of SNF_LINK_DOWN or SNF_LINK_ UP

Remarks

The cost of retrieving the link state requires a function call that reads state kept in kernel host memory (i.e. no
PCI bus reads).

Version 3.0.13.50838 15 15

Myr icom Myricom SNF™

5.1.8.5 intsnf_get_timesource_state (snf_handle_t devhandle, enum snf_timesource_state « state)
Get Timesource information from opened handle

Parameters

devhandle | Device handle
state | Returns one of snf_timesource_state

Remarks

The cost of retrieving the timesource state requires a function call that reads state kept in kernel host memory (i.e.
no PCI bus reads).

5.1.8.6 intsnf_getifaddrs (struct snf_ifaddrs xx ifaddrs_o)

Get a list of Sniffer-capable ethernet devices.

Parameters

‘ ifaddrs_o | Library-allocated list of Sniffer-capable devices

Remarks

Much like getifaddrs, the user can traverse the list until snf_ifa_next is NULL. The interface will show up if the
ethernet driver sees the device but the interface does not have to be brought up with an IP address (i.e. no need to
“ifconfig up’).

Postcondition

User should call snf_freeifaddrs to free the memory that was allocated by the library.

5.1.8.7 int snf_getportmask_linkup (uint32_t x mask_o, int x cnt.o)

Get a mask of all Sniffer-capable ports that have their link state set to UP
The least significant bit represents port 0.

Similar to snf_getportmask_valid except that only ports with an active link are set in the mask.

Parameters

mask_o | bitmask set at output
cnt_o | Number of bits set in bitmask

Return values

0 | Successful.
ENODEYV | Error obtaining port information

Version 3.0.13.50838 16 16

Myricom

Myricom SNF™

5.1.8.8 int snf_getportmask_valid (uint32_t « mask_o, int *x cnt.o)

Get a mask of all Sniffer-capable ports.

The least significant bit represents port 0.

Parameters

mask_o | bitmask set at output

cnt_o | Number of bits set in bitmask

Return values

0 | Successful.

ENODEYV | Error obtaining port information

5.1.8.9 intsnf_init (uint16_t api_version)

Initialize Sniffer Library with api_version == SNF_VERSION_APIL

Initializes the sniffer library.

Parameters

‘ api_version ‘ Must always be SNF_VERSION_API

Remarks

This must be called before any other call to the sniffer library.

The library may be safely initialized multiple times, although the api_version should be the same SNF_VERSIO-

N_API each time.

5.1.8.10 intsnf_open (uint32_t portnum, int num_rings, const struct snf_rss_params x rss_params, int64_t dataring_sz, int

flags, snf_handle_t « devhandle)

Open device for single or multi-ring operation.

Opens a port for sniffing and allocates a device handle.

Parameters

portnum | Port numbers can be interpreted as integers for a specific port number or as a mask when S-
NF_F_AGGREGATE_PORTMASK is specified in flags. Port information can be obtained
through snf_getifaddrs and active/valid masks are available with snf_getportmask_valid and
snf_getportmask_linkup. As a special case, if portnum -1 is passed, the library will internally
open a portmask as if snf_getportmask_valid was called.

num_rings | Number of rings to allocate for receive-side scaling feature, which determines how many dif-
ferent threads can open their own ring via snf_ring_open(). If set to O or less than zero, default
value is used unless SNF_NUM_RINGS is set in the environment.

Version 3.0.13.50838 17

17

Myricom

. Myricom SNF™

rss_params | Points to a user-initialized structure that selects the RSS mechanism to apply to each incoming
packet. This parameter is only meaningful if there are more than 1 rings to be opened. By
default, if users pass a NULL value, the implementation will select its own mechanism to
divide incoming packets across rings. RSS parameters are documented in Receive-Side Scaling
(RSS).

dataring_sz | Represents the total amount of memory to be used to store incoming packet data for all rings
to be opened. If the value is set to O or less than O, the library tries to choose a sensible
default unless SNF_DATARING_SIZE is set in the environment. The value can be specified
in megabytes (if it is less than 1048576) or is otherwise considered to be in bytes. In either case,
the library may slightly adjust the user’s request to satisfy alignment requirements (typically
2MB boundaries).

flags | A mask of flags documented in Open flags for process-sharing, port aggregation and packet
duplication.

devhandle | Device handle allocated if the call is successful

Return values

0 | Successful. the port is opened and a value devhandle is allocated (see remarks)
EBUSY | Device is already opened
EINVAL | Invalid argument passed, most probably num_rings (if not, check syslog)
E2BIG | Driver could not allocate requested dataring_sz (check syslog)
ENOMEM | Either library or driver did not have enough memory to allocate handle descriptors
(but not data ring).
ENODEYV | Device portnum can’t be opened

Postcondition

If successful, the NIC switches from Ethernet mode to Capture mode and the Ethernet driver stops receiving
packets.

If successful, a call to snf_start is required to the Sniffer-mode NIC to deliver packets to the host, and this call
must occur after at least one ring is opened (snf_ring_open).

5.1.8.11 intsnf_open_defaults (uint32_t portnum, snf_handle_t « devhandle)

Open device for single or multi-ring operation.
Opens a port for sniffing and allocates a device handle using system defaults.

This function is a simplified version of snf_open and ensures that the resulting device is opened according to system
defaults. Since the number of rings and flags can be set by module parameters, some installations may prefer to control
device-level parameters in a system-wide configuration and keep the library calls simple.

This call is equivalent to
snf_open (portnum, 0, NULL, 0, -1, devhandle);

Parameters

portnum | Ports are numbered from 0 to N-1 where N’ is the number of Myricom ports available on the
system. snf_getifaddrs() may be a useful utility to retrieve the port number by interface name
or mac address if there are multiple

devhandle | Device handle allocated if the call is successful

Version 3.0.13.50838 18 18

Myr icom Myricom SNF™

See also

snf_open

5.1.8.12 intsnf_ring_close (snf_ring_t ringh)

Close a ring

This function is used to inform the underlying device that no further calls to snf_ring_recv will be made. If the device
is not subsequently closed (snf_close), all packets that would have been delivered to this ring are dropped. Also, by
calling this function, users confirm that all packet processing for packets obtained on this ring via snf_ring_recv is
complete.

Parameters

‘ ringh | Ring handle ‘

Return values

\ 0 | Successful. \

Postcondition

The user has processed the last packet obtained with snf_ring_recv and the device can safely be closed via snf_-
close if all other rings are also closed.

5.1.8.13 intsnf_ring_getstats (snf_ring_t ringh, struct snf_ring_stats x stats)
Get statistics from a receive ring.

Parameters

ringh | Ring handle
stats | User-provided pointer to a statistics structure snf_ring_stats, filled in by the library.

Remarks

This call is provided as a convenience and should not be relied on for time-critical applications or for high levels
of accuracy. Statistics are only updated by the NIC periodically.

Warning

Administrative clearing of NIC counters while a Sniffer-based application is running may cause some of the
counters to be incorrect.

5.1.8.14 intsnf_ring_open (snf_handle_t devhandle, snf_ring_t x ringh)

Opens the next available ring

Version 3.0.13.50838 19 19

Myricom

. Myricom SNF™

Parameters

devhandle | Device handle, obtained from a successful call to snf_open
ringh | Ring handle allocated if the call is successful.

Return values

0 | Successful. The ring is opened and ringh contains the ring handle.
EBUSY | Too many rings already opened

Remarks

This function will consider the value of the SNF_RING_ID environment variable. For more control over ring
allocation, consider using snf_ring_open_id instead.

Postcondition

If successful, a call to snf_start is required to the Sniffer-mode NIC to deliver packets to the host.

5.1.8.15 intsnf_ring_open_id (snf_handle_t devhandle, int ring_id, snf_ring_t x ringh)
Opens a ring from an opened port.

Parameters

devhandle | Device handle, obtained from a successful call to snf_open

ring_id | Ring number to open, from O to num_rings - 1. If the value is -1, this function behaves as if
snf_ring_open was called.
ringh | Ring handle allocated if the call is successful.

Return values

0 | Successful. The ring is opened and ringh contains the ring handle.
EBUSY | If ring_id == -1, Too many rings already opened. If ring_id >= 0, that ring is
already opened.

Remarks

Unlike snf_ring_open this function ignores the environment variable SNF_RING_ID since the expectation is that
users want to directly control ring allocation (unlike through libpcap).

Postcondition

If successful, a call to snf_start is required to the Sniffer-mode NIC to deliver packets to the host.

5.1.8.16 intsnf_ring_portinfo (snf_ring_t ring, struct snf_ring_portinfo * portinfo)

Returns information for the ring. For aggregated rings, returns information for each of the physical rings. It is up
to the user to make sure they have allocated enough memory to hold the information for all the physical rings in an
aggregated ring.

Version 3.0.13.50838 20 20

Myricom

. Myricom SNF™

Parameters

ring | Ring handle (from snf_ring_open)
portinfo | Pointer to memory allocated by the user that will be filled in with the information.

5.1.8.17 intsnf_ring_recv (snf_ring_t ringh, int timeout_ms, struct snf_recv_req * recv_req)

Receive next packet from a receive ring.

This function is used to return the next available packet in a receive ring. The function can block indefinitely, for a
specific timeout or be used as a non-blocking call with a timeout of 0.

Parameters

ringh | Ring handle (from snf_ring_open)

timeout_ms | Receive timeout to control how the function blocks for the next packet. If the value is less
than 0, the function can block indefinitely. If the value is 0, the function is guaranteed to never
enter a blocking state and returns EAGAIN unless there is a packet waiting. If the value is
greater than 0, the caller indicates a desired wait time in milliseconds. With a non-zero wait
time, the function only blocks if there are no outstanding packets. If the timeout expires before
a packet can be received, the function returns EAGAIN (and not ETIMEDOUT). In all cases,
users should expect that the function may return EINTR as the result of signal delivery.
recv_req | Receive Packet structure, only updated when a the function returns O for a successful packet
receive (snf_recv_req)

Return values

0 | Successful packet delivery, recv_req is updated with packet information.
EINTR | The call was interrupted by a signal handler
EAGAIN | No packets available (only when timeout is >= 0).

Remarks

The packet returned always points directly into the receive ring where the NIC has DMAed the packet (there are
no copies). As such, the user obtains a pointer to library/driver allocated memory. Users can modify the contents
of the packets but should remain within the boundaries of pkt_addr and length.

Upon calling the function, the library assumes that the user is done processing the previous packet. The same
assumption is made when the ring is closed (snf_ring_close).

5.1.8.18 intsnf_ring_recv_many (snf_ring_t ring, int timeout_ms, struct snf_recv_req * req_vector, int nreq_in, int x
nreq_out, struct snf_ring_qinfo * ginfo)
Receive and borrow many packets at once.

This function allows callers to receive one or more packets per call. Contrary to snf_ring_recv, this function assumes
that callers will split the functionality to receive packets (or borrow them) and the functionality to return packets
through snf_ring_return_many.

Parameters

\ ring | Ring handle (from snf_ring_open) \

Version 3.0.13.50838 21 21

Myr M Myricom SNF™

timeout_ms | Receive timeout to control how the function blocks for the next packet. See complete docu-
mentation in snf_ring_recv.

req_vector | Vector of receive packet structures provided by the user and only updated when a packet is
received.

nreq_in | Number of receive packet structures provided in req_vector. No more than nreq_in packets
can be received.

nreq_out | Output value for the number of packets actually received and updated in req_vector

ginfo | If non-NULL, the ginfo structure is updated before the function returns 0 or EAGAIN (the
function is not updated for other error conditions).

// See snf_ring_return_many documentation for examples

5.1.8.19 intsnf_ring_return_many (snf_ring_t ring, uint32_t data_qlen, struct snf_ring_qinfo * ginfo)

Return packet space to receive ring.

Under the borrow-many-return-many receive model, it is up to the user to return space in the receive ring. The user
achieves this by accumulating packet lengths from the length_data parameter from each packet received and returning
the space through this function call.

Parameters

ring | Ring handle (from snf_ring_open)
data_glen | Amount of data returned by previously consumed packets. As a special case, if the value -1 is
provided, all data previously borrowed through snf_ring_recv_many will be returned.
ginfo | If non-NULL, the ginfo structure is updated before the function returns.

// Example that shows how the borrow-many-return-many receive model
// works. Since the underlying data is a ring, we don’t return a
// packet count, we return data space. The library function call
// overhead can be amortized for high packet rates.
void
recv_dispatch(snf_ring_t ringh, void (xhandler) (void xpkt, uint32_t length)
{

struct snf_recv_req reqgs[32];

int rc, nregs;

int i, wait_msec = 1000;

extern int do_exit;

uint32_t return_length = 0;

while (1) {
// Wait up to 1 second for at least one packet to arrive with a
// maximum of 32 packets within a single call
rc = snf_ring_recv_many (wrk->hring, wait_msec, reqgs, 32, &nregs, NULL);
if (rc == 0) {
for (1 = 0; 1 < nregs; i++) {
// We handle each packet separately and accumulate the amount
// of data each packet consumes in the ring. Because of
// alignments length_data is somewhat larger than the packet
// length
handler (regs[i] .pkt_addr, regs[i].length);
return_length += regs[i].length_data;
}

// We return the data in a single call. We could have gathered

Version 3.0.13.50838 22 22

Myr icom Myricom SNF™

// some queue information but not this time around (ginfo set
// to NULL)
rc = snf_ring_return_many (wrk->hring, return_length, NULL);
assert (rc == 0);
return_length = 0;
}
else if (rc == EINTR)
if (do_exit)
break;

5.1.8.20 intsnf_set_app_id (int32_tid)

Set the application ID.
Sets the application ID.

The user may set the application ID after the call to snf_init, but before snf_open. When the application ID is set,
Sniffer duplicates receive packets to multiple applications. Each application must have a unique ID. Then, each
application may utilize a different number of rings. The application can be a process with multiple rings and threads.
In this case all rings have the same ID. Or, multiple processes may share the same application ID.

The user may store the application ID in the environment variable SNF_APP_ID, instead of calling this function. Both
actions have the same effect. SNF_APP_ID overrides the ID set via snf_set_app_id.

The user may not run a mix of processes with valid application IDs (not -1) and processes with no IDs (-1). Either all
processes have valid IDs or none of them do.

Parameters

id | A 32-bit signed integer representing the application ID. A valid ID is any value except -1. -1
is reserved and represents "no ID".

Return values

0 | Successful
EINVAL | snf_init has not been called or id is -1.

5.1.8.21 intsnf_start (snf_handle_t devhandle)

Start packet capture on a port. Packet capture is only started if it is currently stopped or has not yet started for the first
time.

Parameters
\ devhandle | Device handle

Remarks

It is safe to restart packet capture via snf_start and snf_stop.
This call must be called before any packet can be received.

Version 3.0.13.50838 23 23

Myr icom Myricom SNF™

5.1.8.22 intsnf_stop (snf_handle_t devhandle)

Stop packet capture on a port. This function should be used carefully in multi-process mode as a single stop command
stops packet capture on all rings. It is usually best to simply snf_ring_close a ring to stop capture on a ring.

Parameters
devhandle | Device handle

Remarks

Stop instructs the NIC to drop all packets until the next snf_start() or until the port is closed. The NIC only
resumes delivering packets when the port is closed, not when traffic is stopped.

Version 3.0.13.50838 24 24

Myr i com Myricom SNF™

L

5.2 Receive-Side Scaling (RSS)

Data Structures

e struct snf_rss_mode_function

e struct snf_rss_params

Defines

* #define SNF_RSS_IPV4 SNF_RSS_IP

Enumerations

e enum snf_rss_params_mode { SNF_RSS_FLAGS =0, SNF_RSS_FUNCTION =1 }

* enum snf_rss_mode_flags {
SNF_RSS_IP = 0x01, SNF_RSS_SRC_PORT = 0x10, SNF_RSS_DST_PORT = 0x20, SNF_RSS_GTP =
0x40,
SNF_RSS_GRE = 0x80 }

5.2.1 Detailed Description

These options can be passed as parameters to snf_open when RSS is used.

5.2.2 Define Documentation
5.2.2.1 #define SNF_RSS IPV4 SNF_RSS_IP

Alias for SNF_RSS_IP since IPv4 and IPv6 are always both enabled

5.2.3 Enumeration Type Documentation

5.2.3.1 enum snf_rss_mode_flags

RSS parameters for SNF_RSS_FLAGS, flags that can be specified to let the implementation know which fields are
significant when generating the hash. By default, RSS is computed on IPv4/IPv6 addresses and source/destination
ports when the protocol is TCP or UDP or SCTP, the equivalent of which would be

struct snf_rss_params rssp;
rssp.mode = SNF_RSS_FLAGS;
rssp.params.rss_flags = SNF_RSS_TIP | SNF_RSS_SRC_PORT | SNF_RSS_DST_PORT;

snf_handle_t hsnf;
int rc = snf_open(0, 0, &rssp, 0, -1, &hsnf);
if (rc == 0)
printf ("RSS will by applied to IP addresses and TCP/UDP ports if applicable"
)i

Version 3.0.13.50838 25 25

S

M—yr i com Myricom SNF™

Enumerator:
SNF_RSS_IP Include IP (v4 or v6) SRC/DST addr in hash
SNF_RSS_SRC_PORT Include TCP/UDP/SCTP SRC port in hash
SNF_RSS_DST PORT Include TCP/UDP/SCTP DST port in hash
SNF_RSS_GTP Include GTP TEID in hash
SNF_RSS_GRE Include GRE contents in hash

5.2.3.2 enum snf_rss_params_mode

RSS select mode

Enumerator:

SNF_RSS_FLAGS Apply RSS using specified flags
SNF_RSS_FUNCTION Apply RSS using user-defined function: Kernel API only

Version 3.0.13.50838 26 26

M—yr i com Myricom SNF™

S

5.3 Open flags for process-sharing, port aggregation and packet duplication

Defines

* #define SNF_F_PSHARED 0x1
* #define SNF_F_AGGREGATE_PORTMASK 0x2
* #define SNF_F_RX_DUPLICATE 0x300

5.3.1 Detailed Description

These options are passed to the flags parameter in snf_open to enable various receive mechanisms.

5.3.2 Define Documentation
5.3.2.1 #define SNF_F AGGREGATE PORTMASK 0x2

Device can be opened for port aggregation (or merging). When this flag is passed, the portnum parameter in snf_open
is interpreted as a bitmask where each set bit position represents a port number. The Sniffer library will then attempt
to open every portnum with its bit set in order to merge the incoming data to the user from multiple ports. Subsequent
calls to snf_ring_open return a ring handle that internally opens a ring on all underlying ports.

5.3.2.2 #define SNF_F_PSHARED 0x1

Device can be process-sharable. This allows multiple independent processes to share rings on the capturing device.
This option can be used to design a custom capture solution but is also used in libpcap when multiple rings are
requested. In this scenario, each libpcap device sees a fraction of the traffic if multiple rings are used unless the
SNF_F_RX_DUPLICATE option is used, in which case each libpcap device sees the same incoming packets.

5.3.2.3 #define SNF_F_RX DUPLICATE 0x300

Device can duplicate packets to multiple rings as opposed to applying RSS in order to split incoming packets across
rings. Users should be aware that with N rings opened, N times the link bandwidth is necessary to process incoming
packets without drops. The duplication happens in the host rather than the NIC, so while only up to 10Gbits of traffic
crosses the PCle, N times that bandwidth is necessary on the host.

When duplication is enabled, RSS options are ignored since every packet is delivered to every ring.

Version 3.0.13.50838 27 27

Myr i com Myricom SNF™

L

5.4 Packet injection

Data Structures

e struct snf_pkt_fragment
Fragment for snf_inject_send_v.
* struct snf_inject_stats

Typedefs

¢ typedef struct snf_inject_handle * snf_inject_t

Functions

* int snf_inject_open (int portnum, int flags, snf_inject_t xhandle)
Open a port for injection and allocate an injection handle.
¢ int snf_get_injection_speed (snf_inject_t devhandle, uint64_t xspeed)
* int snf_inject_send (snf_inject_t inj, int timeout_ms, int flags, const void *pkt, uint32_t length)
Send a packet and optionally block until send resources are available.
« int snf_inject_sched (snf_inject_t inj, int timeout_ms, int flags, const void *pkt, uint32_t length, uint64_t delay-
_ns)
Send a packet with hardware delay and optionally block until send resources are available.
* int snf_inject_send_v (snf_inject_t inj, int timeout_ms, int flags, struct snf_pkt_fragment «frags_vec, int nfrags,
uint32_t length_hint)
Send a packet assembled from a vector of fragments and optionally block until send resources are available.
* intsnf_inject_sched_v (snf_inject_t inj, int timeout_ms, int flags, struct snf_pkt_fragment +frags_vec, int nfrags,
uint32_t length_hint, uint64_t delay_ns)
Send a packet assembled from a vector of fragments at a scheduled point relative to the start of the prior packet and
optionally block until send resources are available.
* int snf_inject_close (snf_inject_t inj)
Close injection handle.
« int snf_inject_getstats (snf_inject_t inj, struct snf_inject_stats xstats)

Get statistics from an injection handle.

5.4.1 Detailed Description

SNF Packet injection routines that can be used for independent packet generation or coupled to reinject packets re-
ceived with snf_ring_recv.

5.42 Typedef Documentation
5.4.2.1 typedef struct snf_inject_handlex snf_inject_t

Opaque injection handle, allocated by snf_inject_open. There are only a limited amount of injection handles per
NIC/port.

Version 3.0.13.50838 28 28

Myr icom Myricom SNF™

5.4.3 Function Documentation
54.3.1 intsnf_get_injection_speed (snf_inject_t devhandle, uint64_t « speed)
Get link speed on opened injection handle

Parameters

devhandle | Device handle
speed | Returns speed in bits-per-second for the link

Remarks

The cost of retrieving the link speed requires a function call that reads information kept in kernel host memory
(i.e. no PCI bus reads).

5.4.3.2 intsnf_inject_close (snf_inject_t inj)

Close injection handle.

This function closes an injection handle and ensures that all pending sends are sent by the NIC.

Parameters

inj ‘ Injection handle

Return values
\ 0 | Successful \

Postcondition

Once closed, the injection handle will have ensured that any pending sends have been sent out on the wire. The
handle is then made available again for the underlying port’s limited amount of handles.

5.4.3.3 intsnf_inject_getstats (snf_inject_t inj, struct snf_inject_stats x stats)

Get statistics from an injection handle.

Parameters
inj | Injection Handle
stats | User-provided pointer to a statistics structure snf_inject_stats, filled in by the SNF implemen-
tation.
Remarks

This call is provided as a convenience and should not be relied on for time-critical applications or for high levels
of accuracy. Statistics are only updated by the NIC periodically.

Version 3.0.13.50838 29 29

Myricom SNF™

Warning

Administrative clearing of NIC counters while a Sniffer-based application is running may cause some of the
counters to be incorrect.

5.4.3.4 intsnf_inject_open (int portnum, int flags, snf_inject_t x handle)
Open a port for injection and allocate an injection handle.

Parameters

portnum | Ports are numbered from O to N-1 where N’ is the number of Myricom ports available on the
system. snf_getifaddrs() may be a useful utility to retrieve the port number by interface name
or mac address if there are multiple

flags | Flags for injection handle. None are currently defined.
handle | Injection handle allocated if the call is successful.

Return values

0 | Success. An injection handle is opened and allocated.
EBUSY | Ran out of injection handles for this port
ENOMEM | Ran out of memory to allocate new injection handle

5.4.3.5 intsnf_inject_sched (snf_inject_t inj, int timeout_ms, int flags, const void * pkt, uint32_t length, uint64_t delay_ns)

Send a packet with hardware delay and optionally block until send resources are available.

This send function is used for paced packet injection. This function can be used as part of a packet replay program.
When the function returns successfully, the packet is guaranteed to be completely buffered by SNF: no references are
kept to the input data and the caller is free to safely modify its contents. The SNF implementation delays transmitting
the packet according to the delay_ns parameter, relative to the start of the prior packet.

Parameters

inj | Injection handle

timeout_ms | Timeout in milliseconds to wait if insufficient send resources are available to inject a new
packet. Insufficient resources can be a lack of send descriptors or a full send queue ring. If
timeout_ms is 0, the function won’t block for send resources and returns EAGAIN.
flags | Flags (currently none).

pkt | Pointer to the packet to be sent. The packet must be a pointer to a complete Ethernet frame
(without the trailing CRC) and start with a valid Ethernet header. The hardware will append
4-CRC bytes at the end of the packet. The maximum valid packet size is 9000 bytes and
is enforced by the library. The minimum valid packet size is 60 bytes, although any packet
smaller than 60 bytes will be accepted by the library and padded by the hardware.

length | The length of the packet, excluding the trailing 4 CRC bytes.
delay_ns | The minimum delay between the start of the prior packet and the start of this packet. Packets
with a delay less than the time to send the prior packet are send immediately. It is recommened
to use 0 as the delta on the first packet sent.

Version 3.0.13.50838 30 30

Myricom

. Myricom SNF™

Return values

0 | Successful. The packet is buffered by SNF.

EAGAIN | Insufficient resources to send packet. If timeout_ms is non-zero, the caller will have
blocked at least that many milliseconds before resources could become available.

EINVAL | Packet length is larger than 9000 bytes.

ENOTSUP | The hardware does not support injection pacing.

Postcondition

If successful, the packet is completely buffered for sending by SNF. The implementation guarantees that it will
eventually send the packet out, as scheduled, without requiring further calls into SNF.

5.4.3.6 intsnf_inject_sched_v (snf_inject_t inj, int timeout_ms, int flags, structsnf pkt_fragment = frags_vec, int
nfrags, uint32_t length_hint, uint64_t delay_ns)

Send a packet assembled from a vector of fragments at a scheduled point relative to the start of the prior packet and
optionally block until send resources are available.

This send function follows the same semantics as snf_inject_send except that the packet to be injected can be assembled
from multiple fragments (or buffers).

Parameters

inj

Injection handle

timeout_ms

Timeout in milliseconds to wait if insufficient send resources are available to inject a new
packet. Insufficient resources can be a lack of send descriptors or a full send queue ring. If
timeout_ms is 0, the function won’t block for send resources and returns EAGAIN.

flags

Flags (currently none).

frags_vec

Pointer to a vector of 1 or more buffers/fragments that can be used to compose a complete
Ethernet frame (not including the trailing CRC header). The first fragment must point to a
valid Ethernet header and the hardware will append its own (valid 4-byte CRC) at the end of
the last buffer/fragment passed in the frags_vec. When all the fragments are added up, the
maximum valid packet size is 9000 bytes and is enforced by the library. The minimum valid
packet size is 60 bytes, although any packet smaller than 60 bytes will be accepted by the
library and padded by the hardware.

nfrags

Number of elements in the io vector

length_hint

If non-zero, the amount is expected to be the sum of all the lengths passed in the io vector. This
parameters can help the library account for space when injecting packets.

delay_ns

The minimum delay between the start of the prior packet and the start of this packet. Packets
with a delay less than the time to send the prior packet are send immediately. It is recommened
to use 0 as the delta on the first packet sent.

Return values

0 | Successful. The packet is buffered by SNF.

EAGAIN | Insufficient resources to send packet. If timeout_ms is non-zero, the caller will have
blocked at least that many milliseconds before resources could become available.

EINVAL | Packet length is larger than 9000 bytes.

ENOTSUP | The hardware does not support injection pacing.

Version 3.0.13.50838 31 31

Myr M Myricom SNF™

Postcondition

If successful, the packet is completely buffered for send by SNF. The implementation guarantees that it will
eventually send the packet out in a timely fashion without requiring further calls into SNF.

// Example that takes an existing packet and prepends the existing

// ethernet type
//

int

with a vlan header.

send_prepend__vlan_tag(uintl6_t vtag, void *pkt, uint32_t len)

{

uint32_t vlanhdr = htonl (0x8100 << 16 | vtag);
struct snf_pkt_fragment vec[3];

// We assume that the input ’pkt’ does not already contain a vlan tag
// and that the pkt is not terminated with a CRC. The hardware will

// add the CRC.

We also use no timeout in the send meaning that the

// send may return EAGAIN if there are insufficient resources to
// queue the send.

vec[0].ptr = (void *) pkt;

vec[0].length = 12; // dest and src mac
vec[l].ptr = &vlanhdr;

vec[l].length = sizeof (vlanhdr);

vec[2].ptr = (void x) ((uint8_t «)pkt + 12);
vec[2].length = len - 12;

len += sizeof (vlanhdr);

// Schedule the packet to be sent 3 us. from the last.
return snf_inject_sched_v (hinj, 0, 0, vec, 3, len, 3000);

5.4.3.7 intsnf_inject_send (snf_inject_t inj, int timeout_ms, int flags, const void pkt, uint32_t length)

Send a packet and optionally block until send resources are available.

This send function is optimized for high packet rate injection. While it can be coupled with a receive ring to reinject a
packet, it is not strictly necessary. This function can be used as part of a packet generator. When the function returns
successfully, the packet is guaranteed to be completely buffered by SNF: no references are kept to the input data and
the caller is free to safely modify its contents. A successful return does not, however, guarantee that the packet has
been injected into the network. The SNF implementation may choose to hold on to the packet for coalescing in order
to improve packet throughput.

Parameters
inj | Injection handle
timeout_ms | Timeout in milliseconds to wait if insufficient send resources are available to inject a new
packet. Insufficient resources can be a lack of send descriptors or a full send queue ring. If
timeout_ms is 0, the function won’t block for send resources and returns EAGAIN.
flags | Flags (currently none).

pkt | Pointer to the packet to be sent. The packet must be a pointer to a complete Ethernet frame
(without the trailing CRC) and start with a valid Ethernet header. The hardware will append
4-CRC bytes at the end of the packet. The maximum valid packet size is 9000 bytes and
is enforced by the library. The minimum valid packet size is 60 bytes, although any packet
smaller than 60 bytes will be accepted by the library and padded by the hardware.

length | The length of the packet, excluding the trailing 4 CRC bytes.

Version 3.0.13.50838

32 32

Myr icom Myricom SNF™

Return values

0 | Successful. The packet is buffered by SNF.

EAGAIN | Insufficient resources to send packet. If timeout_ms is non-zero, the caller will have
blocked at least that many milliseconds before resources could become available.

EINVAL | Packet length is larger than 9000 bytes.

Postcondition

If successful, the packet is completely buffered for sending by SNF. The implementation guarantees that it will
eventually send the packet out in a timely fashion without requiring further calls into SNF.

5.4.3.8 intsnf_inject_send_v (snf_inject_t inj, int timeout_ms, int flags, struct snf_pkt_fragment x frags_vec, int nfrags,

uint32_t length_

hint)

Send a packet assembled from a vector of fragments and optionally block until send resources are available.

This send function follows the same semantics as snf_inject_send except that the packet to be injected can be assembled
from multiple fragments (or buffers).

Parameters

inj

Injection handle

timeout_ms

Timeout in milliseconds to wait if insufficient send resources are available to inject a new
packet. Insufficient resources can be a lack of send descriptors or a full send queue ring. If
timeout_ms is 0, the function won’t block for send resources and returns EAGAIN.

flags

Flags (currently none).

frags_vec

Pointer to a vector of 1 or more buffers/fragments that can be used to compose a complete
Ethernet frame (not including the trailing CRC header). The first fragment must point to a
valid Ethernet header and the hardware will append its own (valid 4-byte CRC) at the end of
the last buffer/fragment passed in the frags_vec. When all the fragments are added up, the
maximum valid packet size is 9000 bytes and is enforced by the library. The minimum valid
packet size is 60 bytes, although any packet smaller than 60 bytes will be accepted by the
library and padded by the hardware.

nfrags

Number of elements in the io vector

length_hint

If non-zero, the amount is expected to be the sum of all the lengths passed in the io vector. This
parameters can help the library account for space when injecting packets.

Return values

0 | Successful. The packet is buffered by SNF.

EAGAIN | Insufficient resources to send packet. If timeout_ms is non-zero, the caller will have
blocked at least that many milliseconds before resources could become available.

EINVAL | Packet length (in length_hint or the sum of all frags_vec lens) is larger than 9000
bytes.

Postcondition

If successful, the packet is completely buffered for send by SNF. The implementation guarantees that it will
eventually send the packet out in a timely fashion without requiring further calls into SNF.

// Example that takes an existing packet and prepends the existing

Version 3.0.13.50838

33 33

Myricom

Myricom SNF™

// ethernet type with a vlan header.
//
int
send_prepend__vlan_tag(uintl6_t vtag, void *pkt, uint32_t len)
{
uint32_t vlanhdr = htonl (0x8100 << 16 | vtag);
struct snf_pkt_fragment vec[3];

// We assume that the input ’pkt’ does not already contain a vlan tag
// and that the pkt is not terminated with a CRC. The hardware will
// add the CRC. We also use no timeout in the send meaning that the
// send may return EAGAIN if there are insufficient resources to

// queue the send.

vec[0].ptr = (void *) pkt;

vec[0].length = 12; // dest and src mac
vec[l].ptr = &vlanhdr;

vec[l].length = sizeof (vlanhdr);

vec[2].ptr = (void x) ((uint8_t x)pkt + 12);
vec[2] .length = len - 12;

len += sizeof (vlanhdr);

return snf_inject_send_v (hinj, 0, 0, wvec, 3, len);

Version 3.0.13.50838 34

34

Myr i com Myricom SNF™

L

5.5 Packet reflect to netdev (kernel stack)

Typedefs

* typedef void * snf_netdev_reflect_t

Functions

e int snf_netdev_reflect_enable (snf_handle_t hsnf, snf netdev_reflect_t xhandle)

Enable a network device for packet reflection.
* int snf_netdev_reflect (snf_netdev_reflect_t ref_dev, const void *pkt, uint32_t length)

Reflect a packet to the network device.
5.5.1 Detailed Description

Network packets acquired through Sniffer can be reflected back into the kernel path as if the device had initially sent
then through to the regular network stack.

While Sniffer users are typically expected to process a significant portion of their packets with less overhead in
userspace, this feature is provided as a convenience to allow some packets to be processed back in the kernel. The
implementation makes no explicit step to make the kernel-based processing any faster than it is when Sniffer is not
being used (in fact, it is probably much slower).

5.5.2 Typedef Documentation
5.5.2.1 typedef voidx snf_netdev_reflect_t

Opaque handle returned by snf_netdev_reflect_enable and used to reflect packets onto by snf_netdev_reflect.

5.5.3 Function Documentation
5.5.3.1 intsnf_netdev_reflect (snf_netdev_reflect_t ref dey, const void * pkt, uint32_t length)
Reflect a packet to the network device.

Parameters

ref_dev | Reflection handle

pkt | Pointer to the packet to be reflected to the network device. The packet must be a pointer to a
complete Ethernet frame (without the trailing CRC) and start with a valid Ethernet header.
length | The length of the packet, excluding the trailing 4 CRC bytes.

Return values
\ 0 | Successful. The packet is buffered by SNF.

Version 3.0.13.50838 35 35

Myr icom Myricom SNF™

Postcondition

If succcessful, the packet is completely buffered into the network device receive path.

5.5.3.2 intsnf_netdev_reflect_enable (snf_handle_t hsnf, snf_netdev_reflect_t « handle)
Enable a network device for packet reflection.

Parameters

hsnf | handle for network device to reflect onto, obtained by snf_open
handle | Reflection handle.

Return values
‘ 0 ‘ Success. An reflection handle is enabled.

Version 3.0.13.50838 36 36

Chapter 6

Namespace Documentation

6.1 snf Namespace Reference

6.1.1 Detailed Description

Sniffer

Author

Myricom, Inc.

37

Myricom Myricom SNF™

Version 3.0.13.50838 38 38

Chapter 7

Data Structure Documentation

7.1 snf_ifaddrs Struct Reference

Data Fields

e struct snf_ifaddrs * snf_ifa_next

» const char * snf _ifa_name

e uint32_t snf_ifa_portnum

* int snf_ifa_maxrings

e uint8_t snf_ifa_macaddr [6]

* uint8_t pad [2]

* int snf_ifa_maxinject

e enum snf_link_state snf_ifa_link_state

e uint64_t snf_ifa_link_speed

7.1.1 Detailed Description

Structure to map Interfaces to Sniffer port numbers

7.1.2 Field Documentation
7.1.2.1 uint8_t snf_ifaddrs::pad[2]

Internal padding (ignore)

7.1.2.2 uint64_t snf_ifaddrs::snf_ifa_link_speed
Link Speed (bps)

39

M—yr i com Myricom SNF™

S

7.1.23 enumsnf link_state snf ifaddrs::snf ifa_link_state

Underlying port’s state (DOWN or UP)

7.1.24 uint8_t snf_ifaddrs::snf_ifa_macaddr[6]

MAC address

7.1.25 intsnf_ifaddrs::snf_ifa_maxinject

Maximum TX injection handles supported

7.1.2.6 intsnf_ifaddrs::snf_ifa_maxrings

Maximum RX rings supported

7.1.2.7 const charx snf _ifaddrs::snf _ifa_name

interface name, as in ifconfig

7.1.2.8 struct snf ifaddrs= snf_ifaddrs::snf ifa_next

next item or NULL if last

7.1.29 uint32_tsnf_ifaddrs::snf_ifa_portnum

snf port number

7.2 snf_inject_stats Struct Reference

Data Fields

* uint64_t inj_pkt_send
* uint64_t nic_pkt_send

* uint64_t nic_bytes_send

7.2.1 Detailed Description

Structure to return statistics from an injection handle. The hardware-specific counters (nic_) apply to all injection
handles.

Version 3.0.13.50838 40 40

Myricom

S

Myricom SNF™

7.2.2 Field Documentation
7.2.2.1 uint64_t snf_inject_stats::inj_pkt_send

Number of packets sent by this injection endpoint

7.2.2.2 uint64_t snf_inject_stats::nic_bytes_send

Number of raw bytes sent by Hardware Interface (see nic_bytes_recv)

7.22.3 uinté4_t snf_inject_stats::nic_pkt_send

Number of total packets sent by Hardware Interface

7.3 snf_pkt_fragment Struct Reference
Fragment for snf_inject_send_v.

Data Fields

* const void * ptr
e uint32_t length

7.3.1 Detailed Description

Fragment for snf_inject_send_v.

7.3.2 Field Documentation
7.3.2.1 uint32_t snf_pkt_fragment::length

Number of bytes

7.3.2.2 const void+ snf_pkt_fragment::ptr

Packet starting address

7.4 snf_recv_req Struct Reference

Data Fields

* void * pkt_addr

Version 3.0.13.50838 41

41

Myricom

S

Myricom SNF™

e uint32_t length

* uint64_t timestamp

e uint32_t portnum

e uint32_t length_data

e uint32_t hw_hash
7.4.1 Detailed Description

Structure to describe a packet received on a data ring.

7.4.2 Field Documentation
7421 uint32_t snf_recv_req::hw_hash

Hash calculated by the NIC.

7.4.2.2 uint32_t snf_recv_req::length

Length of packet, does not include Ethernet CRC

7.4.2.3 uint32_t snf_recv_req::length_data

Length of packet, with alignment in receive queue

7.4.2.4 voidx snf_recv_req::pkt_addr

Pointer to packet directly in data ring

7425 uint32_tsnf_recv_req::portnum

Which port number received the packet

7.4.2.6 uint64_tsnf recv_req::timestamp

64-bit timestamp in nanoseconds

7.5 snf_ring_portinfo Struct Reference

Data Fields

* snf_ring_t ring
e uintptr_t q_size
e uint32_t portcnt

Version 3.0.13.50838 42

42

Myricom

S — Myricom SNEF™
* uint32_t portmask
e uintptr_t data_addr
* uintptr_t data_size
7.5.1 Detailed Description
Receive ring information
7.5.2 Field Documentation
75.2.1 uintptr_t snf_ring_ portinfo::data_addr
Address of data ring
75.2.2 uintptr_t snf_ring_ portinfo::data_size
Size of the data ring
7.5.2.3 uint32_t snf_ring_portinfo::portcnt
How many physical ports deliver to this receive ring
7524 uint32_tsnf_ring_portinfo::portmask
Which ports deliver to this receive ring
7.5.2.5 uintptr_tsnf_ring portinfo::q_size
Size of the data queue
7526 snf_ring tsnf ring portinfo::ring
Single ring
7.6 snf_ring_qinfo Struct Reference
Data Fields
* uintptr_t q_avail
* uintptr_t q_borrowed
* uintptr_t q_free
Version 3.0.13.50838 43 43

M—yr i com Myricom SNF™

S

7.6.1 Detailed Description

Queue consumption information

7.6.2 Field Documentation
7.6.2.1 uintptr_tsnf_ring_qinfo::q_avail

Amount of data available not yet received (approximate)

7.6.2.2 uintptr_t snf_ring qinfo::q_borrowed

Amount of data currently borrowed (exact)

7.6.2.3 uintptr_tsnf_ring qinfo::q_free

Amount of free space still available (approximate)

7.7 snf_ring_stats Struct Reference

Data Fields

* uint64_t nic_pkt_recv

e uint64_t nic_pkt_overflow
e uint64_t nic_pkt_bad

* uint64_t ring_pkt_recv

* uint64_t ring_pkt_overflow
* uint64_t nic_bytes_recv

e uint64_t snf_pkt_overflow
* uint64_t nic_pkt_dropped

7.7.1 Detailed Description

Structure to return statistics from a ring. The Hardware-specific counters apply to all rings as they are counted before
any demultiplexing to a ring is applied.

7.7.2 Field Documentation

7.7.2.1 uint64_t snf _ring_stats::nic_bytes_recv

Number of raw bytes received by the Hardware Interface on all rings. Each Ethernet data packet includes 8 bytes of

HW header, 4 bytes of CRC and the result is aligned to 16 bytes such that a minimum size 60 byte packet counts for
80 bytes.

Version 3.0.13.50838 44 44

M—yr i com Myricom SNF™

S

7.7.2.2 uint64_t snf_ring_stats::nic_pkt_bad

Number of Bad CRC/PHY packets seen by Hardware Interface

7.7.2.3 uinté4_tsnf ring_stats::nic_pkt_dropped

Number of packets droped, reflected in Packets Drop Filter in Counters.

7.7.2.4 uint64_t snf_ring_stats::nic_pkt_overflow

Number of packets dropped by Hardware Interface

7.7.2.5 uint64_t snf ring_stats::nic_pkt_recv

Number of packets received by Hardware Interface

7.7.2.6 uint64_tsnf_ring_stats::ring_pkt_overflow

Number of packets dropped because of insufficient space in receive ring

7.7.2.7 uinté4_t snf ring_stats::ring_pkt_recv

Number of packets received into the receive ring

7.7.2.8 uint6d_t snf ring_stats::snf_pkt_overflow

Number of packets dropped because of insufficient space in shared SNF buffering

7.8 snf_rss_mode_function Struct Reference

Data Fields

e int(* rss_hash_fn)(struct snf_recv_req xr, void *context, uint32_t xhashval)

e void * rss_context

7.8.1 Detailed Description

User-defined RSS hashing function parameters. Users that provide their own callbacks can generate their own hash
based on the contents of a received packet. NOTE This feature is available only in the SNF kernel API

Version 3.0.13.50838 45 45

Myr M Myricom SNF™

7.8.2 Field Documentation
7.8.2.1 void*x snf_rss _mode_function::rss_context

User context that is reflected when the user-provided rss_hash_fn is called.

7.8.2.2 int(x snf_rss_mode_function::rss_hash_fn)(struct snf_recv_req xr, void xcontext, uint32_t hashval)

User-provided hash function. The callback is provided with a valid snf_recv_req structure which contains a packet
as received by Sniffer. It is up to the user to inspect and parse the packet to produce a unique 32-bit hash. The
implementation will map the 32-bit into one of the rings allocated in snf_open. The function must return one of three
values

* 0 The packet is queued in the ring based on the 32-bit hash value that is provided, which is hashval % num_rings.

* <0 The packet is dropped and accounted as a drop in the ring corresponding to the 32-bit hash value provided
by the user.

In the example below, we replace the default hash function with a hash function that sends packets to different rings
at every interval of 500 packets. This approach ignores the actual packet contents and the importance of flow affinity,
we just want to spread the packet analysis to different rings and threads.

#define MAX_RINGS 32

#define PKT_INTERVAL 500
static uint32_t cnt [MAX_RINGS];
static uint32_t cur_ring = 0;

static int
custom_hash (struct snf_recv_req *r, void xcontext, uint32_t xhashval)

{

if (++cnt[cur_ring] == PKT_INTERVAL) {
cnt [cur_ring] = 0;
if (++cur_ring == MAX_RINGS)
cur_ring = 0;

}

// Return cur_ring as the hash value, since Sniffer will apply a
// modulo and the corresponding ring will receive the packet when
// calling snf_recv ()

xhash_val = cur_ring;

return 0;

}

// At snf_open time, select a custom hash approach.

struct snf_rss_params rssp;

rssp.mode = SNF_RSS_FUNCTION;

rssp.params.rss_function.rss_hash_fn custom_hash;
rssp.params.rss_function.rss_context = NULL; // Don’t need a context

// On port 0, we will open MAX_RINGS rings, use default flags,
// select an 800 MB data ring and chose our custom hashing function.
snf_handle_t hsnf;
int rc = snf_open(0, MAX_RINGS, &rssp, 800, 0, &hsnf);
if (rc) |
perror ("Error in snf_open");
exit (EXIT_FAILURE);

Version 3.0.13.50838 46 46

M—yr i com Myricom SNF™

S

7.9

snf_rss_params Struct Reference

Data Fields

7.9.1

enum snf_rss_params_mode mode
union {

enum snf_rss_mode_flags rss_flags

struct snf rss_mode_function rss_function
} params

Detailed Description

When using multiple rings, users can either let Sniffer how to partition the flows of incoming packets or control the
hashing using specific RSS modes. The following modes are available.

7.9.2

7.9.2.1

None: rss_params is NULL in snf_open. When no RSS mode is explicitly specified, users let the implemen-
tation chose an RSS strategy that best matches the revision of the Myri-10G NIC. Unless a specific hashing
strategy is required, this approach is best in terms of performance-portability.

Flag-based: rss_params sets mode to SNF_RSS_FLAGS. This mode allows users to functionally specify which
parts of a packet are significant in the RSS hashing process. A functional specification leaves enough room
for the Sniffer implementation to move part or all of the hash computation between hardware, firmware and
software.

Function-based (kernel API only): rss_params sets mode to SNF_RSS_FUNCTION. This mode guarantees the
most flexibility for the user but forces the hashing to be serialized in software (note that the current generation N-
ICs do not necessarily take a very large performance hit compared to the two other RSS modes). This approach
may be required if the flag-based approach isn’t flexible enough. For example, some users may require that
flow affinity be maintained according to an encapsulated TCP/IP header. See snf_rss_mode_function for more
details.

Field Documentation

enum snf_rss_params_mode snf_rss_params::mode

RSS mode

7.9.2.2 union{ .. } snf_rss_params::params

RSS parameter settings, according to the mode that is selected

7.9.2.3 enum snf_rss_mode_flags snf rss_params::rss_flags

RSS parameters for SNF_RSS_FLAGS

Version 3.0.13.50838 47 47

Myr icom Myricom SNF™

7.9.24 struct snf_rss_mode_function snf_rss_params::rss_function

RSS params for SNF_RSS_FUNCTION

Version 3.0.13.50838 48 48

Index

data_addr
snf_ring_portinfo, 43

data_size
snf_ring_portinfo, 43

hw_hash
snf_recv_req, 42

inj_pkt_send
snf_inject_stats, 41

length
snf_pkt_fragment, 41
snf_recv_req, 42
length_data
snf_recv_req, 42

mode
snf_rss_params, 47

nic_bytes_recv
snf_ring_stats, 44
nic_bytes_send
snf_inject_stats, 41
nic_pkt_bad
snf_ring_stats, 44
nic_pkt_dropped
snf_ring_stats, 45
nic_pkt_overflow
snf_ring_stats, 45
nic_pkt_recv
snf_ring_stats, 45
nic_pkt_send
snf_inject_stats, 41

snf_inject_open, 30
snf_inject_sched, 30
snf_inject_sched_v, 31
snf_inject_send, 32
snf_inject_send_v, 33
snf_inject_t, 28
Packet reflect to netdev (kernel stack), 35
snf_netdev_reflect, 35
snf netdev_reflect_enable, 36
snf_netdev_reflect_t, 35
pad
snf_ifaddrs, 39
params
snf_rss_params, 47
pkt_addr
snf_recv_req, 42
portent
snf_ring_portinfo, 43
portmask
snf_ring_portinfo, 43
portnum
snf_recv_req, 42
ptr
snf_pkt_fragment, 41

g_avail

snf_ring_qinfo, 44
g_borrowed

snf_ring_qinfo, 44
q_free

snf_ring_qinfo, 44
q_size

snf_ring_portinfo, 43

Open flags for process-sharing, port aggregation and packet Receive-Side Scaling (RSS)

duplication, 27
SNF_F_PSHARED, 27

Packet injection, 28
snf_get_injection_speed, 29
snf_inject_close, 29
snf_inject_getstats, 29

49

SNF_RSS_DST_PORT, 26
SNF_RSS_FLAGS, 26
SNF_RSS_FUNCTION, 26
SNF_RSS_GRE, 26
SNF_RSS_GTP, 26
SNF_RSS_IP, 26
SNF_RSS_SRC_PORT, 26

Myricom

S

Myricom SNF™

Receive-Side Scaling (RSS), 25
SNF_RSS_IPV4, 25
snf_rss_mode_flags, 25
snf_rss_params_mode, 26
ring
snf_ring_portinfo, 43
ring_pkt_overflow

snf_ring_stats, 45
ring_pkt_recv

snf_ring_stats, 45
rss_context

snf_rss_mode_function, 46
rss_flags

snf_rss_params, 47
rss_function

snf_rss_params, 47
rss_hash_fn

snf_rss_mode_function, 46

SNF API Reference
SNF_TIMESOURCE_ARISTA_ACTIVE, 14
SNF_TIMESOURCE_EXT_FAILED, 14
SNF_TIMESOURCE_EXT_SYNCED, 14
SNF_TIMESOURCE_EXT_UNSYNCED, 14
SNF_TIMESOURCE_LOCAL, 14
SNF_TIMESOURCE_PPS, 14

SNF_RSS_DST_PORT
Receive-Side Scaling (RSS), 26

SNF_RSS_FLAGS
Receive-Side Scaling (RSS), 26

SNF_RSS_FUNCTION
Receive-Side Scaling (RSS), 26

SNF_RSS_GRE
Receive-Side Scaling (RSS), 26

SNF_RSS_GTP
Receive-Side Scaling (RSS), 26

SNF_RSS_IP
Receive-Side Scaling (RSS), 26

SNF_RSS_SRC_PORT
Receive-Side Scaling (RSS), 26

SNF_TIMESOURCE_ARISTA_ACTIVE
SNF API Reference, 14

SNF_TIMESOURCE_EXT_FAILED
SNF API Reference, 14

SNF_TIMESOURCE_EXT_SYNCED
SNF API Reference, 14

SNF_TIMESOURCE_EXT_UNSYNCED
SNF API Reference, 14

SNF_TIMESOURCE_LOCAL
SNF API Reference, 14

SNF_TIMESOURCE_PPS

SNF API Reference, 14
SNF API Reference, 9

SNF_VERSION_API, 13

snf_close, 14

snf_freeifaddrs, 15

snf_get_link_speed, 15

snf_get_link_state, 15

snf_get_timesource_state, 15

snf_getifaddrs, 16

snf_getportmask_linkup, 16

snf_getportmask_valid, 16

snf_handle_t, 14

snf_init, 17

snf_link_state, 14

snf_open, 17

snf_open_defaults, 18

snf_ring_close, 19

snf_ring_getstats, 19

snf_ring_open, 19

snf_ring_open_id, 20

snf_ring_portinfo, 20

snf_ring_recv, 21

snf_ring_recv_many, 21

snf_ring_return_many, 22

snf_ring_t, 14

snf_set_app_id, 23

snf_start, 23

snf_stop, 23

snf_timesource_state, 14
SNF_F_PSHARED

Open flags for process-sharing, port aggregation and

packet duplication, 27

SNF_RSS_IPV4

Receive-Side Scaling (RSS), 25
SNF_VERSION_API

SNF API Reference, 13
snf, 37
snf_close

SNF API Reference, 14
snf_freeifaddrs

SNF API Reference, 15
snf_get_injection_speed

Packet injection, 29
snf_get_link_speed

SNF API Reference, 15
snf_get_link_state

SNF API Reference, 15
snf_get_timesource_state

SNF API Reference, 15
snf_getifaddrs

Version 3.0.13.50838

50 50

Myricom

L

Myricom SNF™

SNF API Reference, 16
snf_getportmask_linkup

SNF API Reference, 16
snf_getportmask_valid

SNF API Reference, 16
snf handle t

SNF API Reference, 14
snf_ifa_link_speed

snf_ifaddrs, 39
snf_ifa_link_state

snf_ifaddrs, 39
snf_ifa_macaddr

snf_ifaddrs, 40
snf_ifa_maxinject

snf_ifaddrs, 40
snf_ifa_maxrings

snf_ifaddrs, 40
snf ifa_name

snf_ifaddrs, 40
snf_ifa_next

snf_ifaddrs, 40
snf_ifa_portnum

snf_ifaddrs, 40
snf_ifaddrs, 39

pad, 39

snf_ifa_link_speed, 39

snf_ifa_link_state, 39

snf_ifa_macaddr, 40

snf_ifa_maxinject, 40

snf_ifa_maxrings, 40

snf_ifa_name, 40

snf_ifa_next, 40

snf_ifa_portnum, 40
snf_init

SNF API Reference, 17
snf_inject_close

Packet injection, 29
snf_inject_getstats

Packet injection, 29
snf_inject_open

Packet injection, 30
snf_inject_sched

Packet injection, 30
snf_inject_sched_v

Packet injection, 31
snf_inject_send

Packet injection, 32
snf_inject_send_v

Packet injection, 33
snf_inject_stats, 40

inj_pkt_send, 41

nic_bytes_send, 41

nic_pkt_send, 41
snf_inject_t

Packet injection, 28
snf link_state

SNF API Reference, 14
snf_netdev_reflect

Packet reflect to netdev (kernel stack), 35
snf_netdev_reflect_enable

Packet reflect to netdev (kernel stack), 36
snf_netdev_reflect_t

Packet reflect to netdev (kernel stack), 35
snf_open

SNF API Reference, 17
snf_open_defaults

SNF API Reference, 18
snf_pkt_fragment, 41

length, 41

ptr, 41
snf_pkt_overflow

snf_ring_stats, 45
snf_recv_req, 41

hw_hash, 42

length, 42

length_data, 42

pkt_addr, 42

portnum, 42

timestamp, 42
snf_ring_close

SNF API Reference, 19
snf_ring_getstats

SNF API Reference, 19
snf_ring_open

SNF API Reference, 19
snf_ring_open_id

SNF API Reference, 20
snf_ring_portinfo, 42

data_addr, 43

data_size, 43

portent, 43

portmask, 43

q_size, 43

ring, 43

SNF API Reference, 20
snf_ring_qinfo, 43

g_avail, 44

g_borrowed, 44

q_free, 44
snf_ring_recv

Version 3.0.13.50838

51

Myricom

L

Myricom SNF™

SNF API Reference, 21
snf_ring_recv_many

SNF API Reference, 21
snf_ring_return_many

SNF API Reference, 22
snf_ring_stats, 44

nic_bytes_recv, 44

nic_pkt_bad, 44

nic_pkt_dropped, 45

nic_pkt_overflow, 45

nic_pkt_recv, 45

ring_pkt_overflow, 45

ring_pkt_recv, 45

snf_pkt_overflow, 45
snf_ring_t

SNF API Reference, 14
snf_rss_mode_flags

Receive-Side Scaling (RSS), 25
snf_rss_mode_function, 45

rss_context, 46

rss_hash_fn, 46
snf_rss_params, 47

mode, 47

params, 47

rss_flags, 47

rss_function, 47
snf_rss_params_mode

Receive-Side Scaling (RSS), 26
snf_set_app_id

SNF API Reference, 23
snf_start

SNF API Reference, 23
snf_stop

SNF API Reference, 23
snf_timesource_state

SNF API Reference, 14

timestamp
snf_recv_req, 42

Version 3.0.13.50838 52

52

	SNF API Reference
	Sniffer Documentation
	SNF API Reference
	SNF API with Receive-Side Scaling
	SNF API with Duplication
	SNF API with Port Aggregation (Merging)

	Examples

	Module Index
	API Reference

	Namespace Index
	Namespace List

	Data Structure Index
	Data Structures

	Module Documentation
	SNF API Reference
	Detailed Description
	API Reference
	Processing Model
	Multiple Receive Rings
	Zero-Copy receives
	API Software Overhead
	Thread-Safety

	Implementation details
	Timestamps
	Library Memory Consumption
	Ethernet and Sniffer Driver Modes

	Define Documentation
	SNF_VERSION_API

	Typedef Documentation
	snf_handle_t
	snf_ring_t

	Enumeration Type Documentation
	snf_link_state
	snf_timesource_state

	Function Documentation
	snf_close
	snf_freeifaddrs
	snf_get_link_speed
	snf_get_link_state
	snf_get_timesource_state
	snf_getifaddrs
	snf_getportmask_linkup
	snf_getportmask_valid
	snf_init
	snf_open
	snf_open_defaults
	snf_ring_close
	snf_ring_getstats
	snf_ring_open
	snf_ring_open_id
	snf_ring_portinfo
	snf_ring_recv
	snf_ring_recv_many
	snf_ring_return_many
	snf_set_app_id
	snf_start
	snf_stop

	Receive-Side Scaling (RSS)
	Detailed Description
	Define Documentation
	SNF_RSS_IPV4

	Enumeration Type Documentation
	snf_rss_mode_flags
	snf_rss_params_mode

	Open flags for process-sharing, port aggregation and packet duplication
	Detailed Description
	Define Documentation
	SNF_F_AGGREGATE_PORTMASK
	SNF_F_PSHARED
	SNF_F_RX_DUPLICATE

	Packet injection
	Detailed Description
	Typedef Documentation
	snf_inject_t

	Function Documentation
	snf_get_injection_speed
	snf_inject_close
	snf_inject_getstats
	snf_inject_open
	snf_inject_sched
	snf_inject_sched_v
	snf_inject_send
	snf_inject_send_v

	Packet reflect to netdev (kernel stack)
	Detailed Description
	Typedef Documentation
	snf_netdev_reflect_t

	Function Documentation
	snf_netdev_reflect
	snf_netdev_reflect_enable

	Namespace Documentation
	snf Namespace Reference
	Detailed Description

	Data Structure Documentation
	snf_ifaddrs Struct Reference
	Detailed Description
	Field Documentation
	pad
	snf_ifa_link_speed
	snf_ifa_link_state
	snf_ifa_macaddr
	snf_ifa_maxinject
	snf_ifa_maxrings
	snf_ifa_name
	snf_ifa_next
	snf_ifa_portnum

	snf_inject_stats Struct Reference
	Detailed Description
	Field Documentation
	inj_pkt_send
	nic_bytes_send
	nic_pkt_send

	snf_pkt_fragment Struct Reference
	Detailed Description
	Field Documentation
	length
	ptr

	snf_recv_req Struct Reference
	Detailed Description
	Field Documentation
	hw_hash
	length
	length_data
	pkt_addr
	portnum
	timestamp

	snf_ring_portinfo Struct Reference
	Detailed Description
	Field Documentation
	data_addr
	data_size
	portcnt
	portmask
	q_size
	ring

	snf_ring_qinfo Struct Reference
	Detailed Description
	Field Documentation
	q_avail
	q_borrowed
	q_free

	snf_ring_stats Struct Reference
	Detailed Description
	Field Documentation
	nic_bytes_recv
	nic_pkt_bad
	nic_pkt_dropped
	nic_pkt_overflow
	nic_pkt_recv
	ring_pkt_overflow
	ring_pkt_recv
	snf_pkt_overflow

	snf_rss_mode_function Struct Reference
	Detailed Description
	Field Documentation
	rss_context
	rss_hash_fn

	snf_rss_params Struct Reference
	Detailed Description
	Field Documentation
	mode
	params
	rss_flags
	rss_function

